Optimizing Perfusion-Decellularization Methods of Porcine Livers for Clinical-Scale Whole-Organ Bioengineering
نویسندگان
چکیده
Aim. To refine the decellularization protocol of whole porcine liver, which holds great promise for liver tissue engineering. Methods. Three decellularization methods for porcine livers (1% sodium dodecyl sulfate (SDS), 1% Triton X-100 + 1% sodium dodecyl sulfate, and 1% sodium deoxycholate + 1% sodium dodecyl sulfate) were studied. The obtained liver scaffolds were processed for histology, residual cellular content analysis, and extracellular matrix (ECM) components evaluation to investigate decellularization efficiency and ECM preservation. Rat primary hepatocytes were seeded into three kinds of scaffold to detect the biocompatibility. Results. The whole liver decellularization was successfully achieved following all three kinds of treatment. SDS combined with Triton had a high efficacy of cellular removal and caused minimal disruption of essential ECM components; it was also the most biocompatible procedure for primary hepatocytes. Conclusion. We have refined a novel, standardized, time-efficient, and reproducible protocol for the decellularization of whole liver which can be further adapted to liver tissue engineering.
منابع مشابه
Cold-perfusion decellularization of whole-organ porcine pancreas supports human fetal pancreatic cell attachment and expression of endocrine and exocrine markers
Despite progress in the field of decellularization and recellularization, the outcome for pancreas has not been adequate. This might be due to the challenging dual nature of pancreas with both endocrine and exocrine tissues. We aimed to develop a novel and efficient cold-perfusion method for decellularization of porcine pancreas and recellularize acellular scaffolds with human fetal pancreatic ...
متن کاملTowards the creation of decellularized organ constructs using irreversible electroporation and active mechanical perfusion
BACKGROUND Despite advances in transplant surgery and general medicine, the number of patients awaiting transplant organs continues to grow, while the supply of organs does not. This work outlines a method of organ decellularization using non-thermal irreversible electroporation (N-TIRE) which, in combination with reseeding, may help supplement the supply of organs for transplant. METHODS In ...
متن کاملUse of decellularized porcine liver for engineering humanized liver organ.
BACKGROUND New bioartificial liver devices are needed to supplement the limited supply of organ donors available for patients with end-stage liver disease. Here, we report the results of a pilot study aimed at developing a humanized porcine liver by transplanting second trimester human fetal hepatocytes (Hfh) co-cultured with fetal stellate cells (Hfsc) into the decellularized matrix of a porci...
متن کاملThe use of whole organ decellularization for the generation of a vascularized liver organoid.
UNLABELLED A major roadblock to successful organ bioengineering is the need for a functional vascular network within the engineered tissue. Here, we describe the fabrication of three-dimensional, naturally derived scaffolds with an intact vascular tree. Livers from different species were perfused with detergent to selectively remove the cellular components of the tissue while preserving the ext...
متن کاملBioartificial Heart: A Human-Sized Porcine Model – The Way Ahead
BACKGROUND A bioartificial heart is a theoretical alternative to transplantation or mechanical left ventricular support. Native hearts decellularized with preserved architecture and vasculature may provide an acellular tissue platform for organ regeneration. We sought to develop a tissue-engineered whole-heart neoscaffold in human-sized porcine hearts. METHODS We decellularized porcine hearts...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015